973 research outputs found

    An Efficient Method for the Solution of Schwinger--Dyson equations for propagators

    Get PDF
    Efficient computation methods are devised for the perturbative solution of Schwinger--Dyson equations for propagators. We show how a simple computation allows to obtain the dominant contribution in the sum of many parts of previous computations. This allows for an easy study of the asymptotic behavior of the perturbative series. In the cases of the four-dimensional supersymmetric Wess--Zumino model and the ϕ63\phi_6^3 complex scalar field, the singularities of the Borel transform for both positive and negative values of the parameter are obtained and compared.Comment: 9 pages, no figures. Match of the published version, with the corrections in proo

    Singularity, complexity, and quasi--integrability of rational mappings

    Get PDF
    We investigate global properties of the mappings entering the description of symmetries of integrable spin and vertex models, by exploiting their nature of birational transformations of projective spaces. We give an algorithmic analysis of the structure of invariants of such mappings. We discuss some characteristic conditions for their (quasi)--integrability, and in particular its links with their singularities (in the 2--plane). Finally, we describe some of their properties {\it qua\/} dynamical systems, making contact with Arnol'd's notion of complexity, and exemplify remarkable behaviours.Comment: Latex file. 17 pages. To appear in CM

    On the Symmetries of Integrability

    Full text link
    We show that the Yang-Baxter equations for two dimensional models admit as a group of symmetry the infinite discrete group A2(1)A_2^{(1)}. The existence of this symmetry explains the presence of a spectral parameter in the solutions of the equations. We show that similarly, for three-dimensional vertex models and the associated tetrahedron equations, there also exists an infinite discrete group of symmetry. Although generalizing naturally the previous one, it is a much bigger hyperbolic Coxeter group. We indicate how this symmetry can help to resolve the Yang-Baxter equations and their higher-dimensional generalizations and initiate the study of three-dimensional vertex models. These symmetries are naturally represented as birational projective transformations. They may preserve non trivial algebraic varieties, and lead to proper parametrizations of the models, be they integrable or not. We mention the relation existing between spin models and the Bose-Messner algebras of algebraic combinatorics. Our results also yield the generalization of the condition qn=1q^n=1 so often mentioned in the theory of quantum groups, when no qq parameter is available.Comment: 23 page

    Singularity confinement and algebraic integrability

    Full text link
    Two important notions of integrability for discrete mappings are algebraic integrability and singularity confinement, have been used for discrete mappings. Algebraic integrability is related to the existence of sufficiently many conserved quantities whereas singularity confinement is associated with the local analysis of singularities. In this paper, the relationship between these two notions is explored for birational autonomous mappings. Two types of results are obtained: first, algebraically integrable mappings are shown to have the singularity confinement property. Second, a proof of the non-existence of algebraic conserved quantities of discrete systems based on the lack of confinement property is given.Comment: 18 pages, no figur

    New Gauge Invariant Formulation of the Chern-Simons Gauge Theory: Classical and Quantal Analysis

    Get PDF
    Recently proposed new gauge invariant formulation of the Chern-Simons gauge theory is considered in detail. This formulation is consistent with the gauge fixed formulation. Furthermore it is found that the canonical (Noether) Poincar\'e generators are not gauge invariant even on the constraints surface and do not satisfy the Poincar\'e algebra contrast to usual case. It is the improved generators, constructed from the symmetric energy-momentum tensor, which are (manifestly) gauge invariant and obey the quantum as well as classical Poincar\'e algebra. The physical states are constructed and it is found in the Schr\"odinger picture that unusual gauge invariant longitudinal mode of the gauge field is crucial for constructing the physical wavefunctional which is genuine to (pure) Chern-Simons theory. In matching to the gauge fixed formulation, we consider three typical gauges, Coulomb, axial and Weyl gauges as explicit examples. Furthermore, recent several confusions about the effect of Dirac's dressing function and the gauge fixings are clarified. The analysis according to old gauge independent formulation a' la Dirac is summarized in an appendix.Comment: No figures, 44 page

    Symmetrical Temperature-Chaos Effect with Positive and Negative Temperature Shifts in a Spin Glass

    Full text link
    The aging in a Heisenberg-like spin glass Ag(11 at% Mn) is investigated by measurements of the zero field cooled magnetic relaxation at a constant temperature after small temperature shifts ΔT/Tg<0.012|\Delta T/T_g| < 0.012. A crossover from fully accumulative to non-accumulative aging is observed, and by converting time scales to length scales using the logarithmic growth law of the droplet model, we find a quantitative evidence that positive and negative temperature shifts cause an equivalent restart of aging (rejuvenation) in terms of dynamical length scales. This result supports the existence of a unique overlap length between a pair of equilibrium states in the spin glass system.Comment: 4 page

    Baxterization, dynamical systems, and the symmetries of integrability

    Full text link
    We resolve the `baxterization' problem with the help of the automorphism group of the Yang-Baxter (resp. star-triangle, tetrahedron, \dots) equations. This infinite group of symmetries is realized as a non-linear (birational) Coxeter group acting on matrices, and exists as such, {\em beyond the narrow context of strict integrability}. It yields among other things an unexpected elliptic parametrization of the non-integrable sixteen-vertex model. It provides us with a class of discrete dynamical systems, and we address some related problems, such as characterizing the complexity of iterations.Comment: 25 pages, Latex file (epsf style). WARNING: Postscript figures are BIG (600kB compressed, 4.3MB uncompressed). If necessary request hardcopy to [email protected] and give your postal mail addres
    corecore